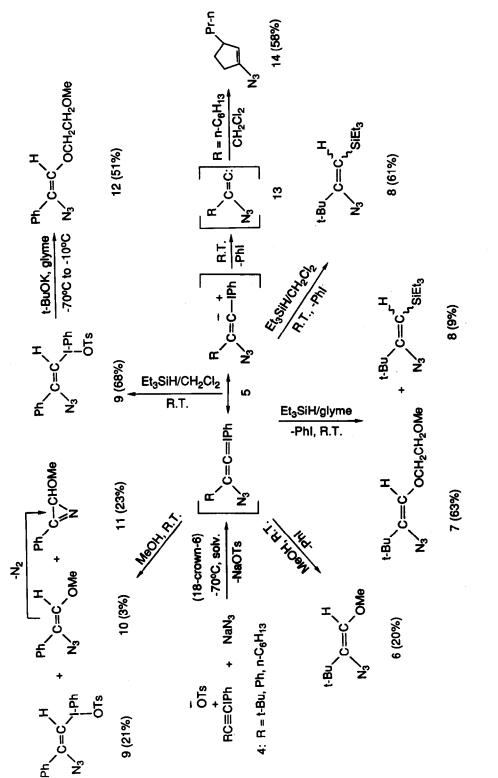

GENERATION, TRAPPING AND FATE OF ALKYLIDENECARBENE-IODONIUM YLIDES FROM THE ADDITION OF NaN₂ TO ALKYNYLPHENYLIODONIUM TOSYLATES

Tsugio Kitamura and Peter J. Stang* Chemistry Department, The University of Utah Salt Lake City, Utah 84112

Summary: Addition of NaN₃ to $RC\equiv CIPh \cdot OTs$ results in novel alkylidenecarbene-iodonium ylides, 5, $R(N_3)C=C=IPh$, that By either protonation, ylide transfer or insertion of the derived carbene $R(N_3)C=C$: give unique functionalized vinyl azides.


Despite the importance of ylides, $\underline{1}$, in carbone chemistry, 1 until recently² there was little known about these species. In the last few years they have become the object of increasing research effort with particular attention on halonium ylides.³ In 1984 Moriarty and co-workers⁴ reported the x-ray structure of a stable carbone-iodonium ylide 2.

Even less is known⁵ about the homologous alkylidenecarbene ylides.⁶ Hence, we wish to report on the generation, trapping and fate of alkylidenecarbene-iodonium ylides, $\underline{3}$, from alkynylphenyliodonium tosylates, $\underline{4}$.

Reaction of NaN₃ with readily available^{7,8} $\underline{4}$ results in the addition of the azide ion to the electron deficient β -carbon of $\underline{4}$ giving alkylidenecarbene-iodonium ylides $\underline{5}$. The subsequent fate of ylide $\underline{5}$ is strongly dependent upon both the nature of R in $\underline{4}$ and the reaction medium as shown in the Scheme.⁹ In methanol the vinyl azide, carbene insertion products, $\underline{6}$ and $\underline{10}$ (and $\underline{11}$ derived from $\underline{10}$ by loss of N₂) are formed along with some "protonated" product $\underline{9}$. In the case of Et_3SiH/CH_2Cl_2 the phenyl substituted ylide $\underline{5}$ (R = Ph) gives only "protonated" product $\underline{9}$ whereas the \underline{t} -butyl substituted ylide $\underline{5}$ (R = \underline{t} -Bu) gives only the carbene derived Si-H insertion product $\underline{8}$ both in good yields. Interestingly in a mixture of $Et_3SiH/glyme$ the \underline{t} -butyl system forms the Si-H insertion product $\underline{8}$ only in minor amounts (9%) the major product being the azidovinyl ether 7 (63%).

Likewise, treatment of the protonated ylide 9 with <u>t</u>-BuOK in glyme results only in the formation of azidovinyl ether <u>12</u>. This last result is particularly surprising as this reaction undoubtedly proceeds via the regeneration of 5 and its direct trapping by glyme to give <u>12</u>. In other words, we do not believe that the free carbene $Ph(N_3)C=C$: is involved in this reaction as it is well established^{5,10} that all β -aryl functionalized alkylidenecarbenes rearrange to the corresponding phenylalkyne and cannot be trapped intermolecularly by trapping agents.

Scheme: Alkylidene-lodonium Ylides 5 via Addition of NaN₃ to Alkynylphenyliodonium Tosylates 4.⁹ Hence, it is evident that the fate and chemistry of alkylidenecarbene-iodonium ylides $\underline{5}$ is distinct from that of the free carbenes. Specifically, these intermediates may be a) protonated, resulting in $\underline{9}$; b) undergo some sort of ylide-transfer process resulting in $\underline{6}$, $\underline{7}$, $\underline{10}$ and $\underline{12}$ or c) loose PhI giving the free carbene $\underline{13}$ that then gets trapped via insertion into Si-H resulting in $\underline{8}$. Further evidence for the uniqueness of $\underline{5}$ is provided by the fact that in mixtures of $Et_3SiH/glyme$ it ($\underline{5}$: R = \underline{t} -Bu) prefers to undergo ylide transfer resulting in $\underline{7}$ and only a small amount of the free carbene is formed to give $\underline{8}$ (via loss of PhI and Si-H insertion). Free alkylidenecarbenes do not interact with glyme itself, which in fact is the solvent of choice for the generation and subsequent reaction of unsaturated carbenes.⁵ Further evidence for the involvement of the free carbene $\underline{13}$ is the formation of cyclic vinyl azide $\underline{14}$ via the insertion of $\underline{13}$ into the secondary C-H bond of the n-hexyl group. Such C-H insertion with preferential formation of cyclopentenes is well precedented for alkylidenecarbenes.¹¹ An alkylidenecarbene ylide, similar to $\underline{5}$, (but with an enolate as nucleophile instead of \overline{N}_3) was recently postulated by Ochiai and co-workers¹² in a novel cyclopentene annulation reaction via tandem Michael-carbene insertion reactions of related alkynyliodonium salts 4.

All products <u>6-12</u> and <u>14</u> were identified by infrared and ¹H and ¹³C NMR spectra.¹³ Specifically, with the exception of <u>11</u> all products showed a strong IR-absorption around 2100 cm⁻¹, (very characteristic of vinylazides)¹⁴ along with absorption in the range of 1570 - 1660 cm⁻¹ due to the olefinic double bond. In the proton NMR they all showed a singlet between 5.9 - 6.6 ppm, (characteristic of the vinylic proton), except for <u>8</u> that has two singals at 4.76 and 4.86 ppm corresponding to the E and Z isomers. In the ¹³C NMR the olefinic signals were at 118 - 128 ppm and 134 - 138 ppm for the alkoxyvinylazides, at 149.97 and 85.79 ppm for <u>9</u>, and at 103.18, 162.01, 108.79 and 160.27 ppm for <u>8</u> (mixture of E and Z isomers).

Finally, these reactions represent not only further evidence for novel alkylidenecarbeneiodonium ylides, 5, but also a new way of preparing unique functionalized vinyl azides¹⁴ (albeit only in modest yields) via alkynyliodonium salts 4.

Acknowledgement: We are grateful to the NCI of NIH (CA 16903-11) for financial support.

References and Notes

- A.W. Johnson, "Ylide Chemistry", Academic Press, New York, 1964. W. Kirmse, "Carbene Chemistry", 2nd Ed., Academic Press, New York, 1971.
- P. deMarch and R. Huisgen, J. <u>Am. Chem. Soc.</u>, <u>104</u>, 4952, 4953 (1982). R.P. L'Esperance, T.M. Ford and M. Jones, Jr., J. Am. Chem. Soc., <u>110</u>, 209 (1988).
- G.F. Koser, in "The Chemistry of Functional Groups, Supplement D", S. Patai, Ed., Wiley-Interscience, Chapt. 18, pp. 774-806, 1983.
- R.M. Moriarty, I. Prakash, O. Prakash and W.A. Freeman, J. <u>Am. Chem. Soc.</u>, <u>106</u>, 6082 (1984). R.M. Moriarty, B.R. Bailey, III, O. Prakash and I. Prakash, <u>ibid.</u>, <u>107</u>, 1375 (1985).
- 5. P.J. Stang, Chem. Rev., 78, 383 (1978).
- 6. P.J. Stang, H. Wingert and A.M. Arif, J. Am. Chem. Soc., 109, 7235 (1987).
- P.J. Stang, B.W. Surber, Z.-C. Chen, K.A. Roberts and A.G. Anderson, <u>J. Am. Chem. Soc.</u>, <u>109</u>, 228 (1987). P.J. Stang, B.W. Surber, <u>1b1d</u>., <u>107</u>, 1452 (1985).
- L. Rebrovic and G.F. Koser, J. <u>Org. Chem.</u>, <u>49</u>, 4700 (1984). G.F. Koser, L. Rebrovic and R.H. Wettach, <u>ibid.</u>, <u>46</u>, 4324 (1981).
- 9. All reactions were carried out as follows: At -70° C to a solution of NaN₃ (8-16 mmol) in methanol (50 mL) was added <u>4</u> (4 mmol) and the mixture was warmed to room temperature with stirring. In the reactions with Et₃SiH/CH₂Cl₂ and Et₃SiH/glyme, 18-crown-6 (8 mmol) was